Expression of 3-ketoacyl-acyl carrier protein reductase (fabG) genes enhances production of polyhydroxyalkanoate copolymer from glucose in recombinant Escherichia coli JM109.

نویسندگان

  • Christopher T Nomura
  • Kazunori Taguchi
  • Zhihua Gan
  • Kazuhiro Kuwabara
  • Tomoyo Tanaka
  • Kazuma Takase
  • Yoshiharu Doi
چکیده

Polyhydroxyalkanoates (PHAs) are biologically produced polyesters that have potential application as biodegradable plastics. Especially important are the short-chain-length-medium-chain-length (SCL-MCL) PHA copolymers, which have properties ranging from thermoplastic to elastomeric, depending on the ratio of SCL to MCL monomers incorporated into the copolymer. Because of the potential wide range of applications for SCL-MCL PHA copolymers, it is important to develop and characterize metabolic pathways for SCL-MCL PHA production. In previous studies, coexpression of PHA synthase genes and the 3-ketoacyl-acyl carrier protein reductase gene (fabG) in recombinant Escherichia coli has been shown to enhance PHA production from related carbon sources such as fatty acids. In this study, a new fabG gene from Pseudomonas sp. 61-3 was cloned and its gene product characterized. Results indicate that the Pseudomonas sp. 61-3 and E. coli FabG proteins have different substrate specificities in vitro. The current study also presents the first evidence that coexpression of fabG genes from either E. coli or Pseudomonas sp. 61-3 with fabH(F87T) and PHA synthase genes can enhance the production of SCL-MCL PHA copolymers from nonrelated carbon sources. Differences in the substrate specificities of the FabG proteins were reflected in the monomer composition of the polymers produced by recombinant E. coli. SCL-MCL PHA copolymer isolated from a recombinant E. coli strain had improved physical properties compared to the SCL homopolymer poly-3-hydroxybutyrate. This study defines a pathway to produce SCL-MCL PHA copolymer from the fatty acid biosynthesis that may impact on PHA production in recombinant organisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coexpression of genetically engineered 3-ketoacyl-ACP synthase III (fabH) and polyhydroxyalkanoate synthase (phaC) genes leads to short-chain-length-medium-chain-length polyhydroxyalkanoate copolymer production from glucose in Escherichia coli JM109.

Polyhydroxyalkanoates (PHAs) can be divided into three main types based on the sizes of the monomers incorporated into the polymer. Short-chain-length (SCL) PHAs consist of monomer units of C3 to C5, medium-chain-length (MCL) PHAs consist of monomer units of C6 to C14, and SCL-MCL PHAs consist of monomers ranging in size from C4 to C14. Although previous studies using recombinant Escherichia co...

متن کامل

Production of short-chain-length/medium-chain-length polyhydroxyalkanoate (PHA) copolymer in the plastid of Arabidopsis thaliana using an engineered 3-ketoacyl-acyl carrier protein synthase III.

Short-chain-length/medium-chain-length (SCL/MCL) polyhydroxyalkanoate (PHA) was produced in the plastids of Arabidopsis thaliana. Phe87Thr (F87T) mutated 3-ketoacyl-acyl carrier protein (ACP) synthase III (FabH) from Escherichia coli , and Ser325Thr/Gln481Lys (ST/QK) mutated polyhydroxyalkanoate (PHA) synthase (PhaC1) from Pseudomonas sp. 61-3, along with the beta-ketothiolase (PhaA) and acetoa...

متن کامل

Effective enhancement of short-chain-length-medium-chain-length polyhydroxyalkanoate copolymer production by coexpression of genetically engineered 3-ketoacyl-acyl-carrier-protein synthase III (fabH) and polyhydroxyalkanoate synthesis genes.

Polyhydroxyalkanoates (PHAs) are biodegradable polyesters that have a wide variety of physical properties dependent on the lengths of the pendant groups of the monomer units in the polymer. PHAs composed of mostly short-chain-length (SCL) monomers are often stiff and brittle, whereas PHAs composed of mostly medium-chain-length (MCL) monomers are elastomeric in nature. SCL-MCL PHA copolymers can...

متن کامل

Isolation of Vibrio harveyi acyl carrier protein and the fabG, acpP, and fabF genes involved in fatty acid biosynthesis.

We report the isolation of Vibrio harveyi acyl carrier protein (ACP) and cloning of a 3,973-bp region containing the fabG (encoding 3-ketoacyl-ACP reductase, 25.5 kDa), acpP (encoding ACP, 8.7 kDa), fabF (encoding 3-ketoacyl-ACP synthase II, 43.1 kDa), and pabC (encoding aminodeoxychorismate lyase, 29.9 kDa) genes. Predicted amino acid sequences were, respectively, 78, 86, 76, and 35% identical...

متن کامل

FabG mediates polyhydroxyalkanoate production from both related and nonrelated carbon sources in recombinant Escherichia coli LS5218.

Polyhydroxyalkanoates (PHAs) composed of a mixture of short-chain-length-medium-chain-length (SCL-MCL) hydroxyacyl monomers are biologically produced polyesters that have properties ranging from thermoplastic to elastomeric, dependent on the molar ratio of SCL to MCL monomers incorporated into the copolymer. Because of the potential wide range of properties and applications for SCL-MCL PHA copo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 71 8  شماره 

صفحات  -

تاریخ انتشار 2005